Mondphase und -beleuchtung ausrechnen

Mondphase berechnen

Eigentlich ganz einfach, wenn man ein genaues Vollmonddatum kennt. Man rechnet dann die Zeit seitdem bis heute aus und teilt das Ergebnis durch die Zeit, die zwischen zwei Neumondereignissen vergeht. Von diese Ergebnis verwenden wir nur den Teil hinter dem Komma und haben so die aktuelle Phase ermittelt.
Der Phasenwert liegt zwischen null und eins, und sagt folgendes aus:

  • 0.0 bedeutet Vollmond
  • 0.25 abnehmender Halbmond (das letzte Viertel)
  • 0.5 Neumond
  • 0.75 zunehmender Halbmond (erstes Viertel)

Zu kompliziert? Dann ein Beispiel:

  • Heute ist der 16.12.2018, 12:00 Uhr
  • Ein “historischer” Vollmond war z.B. am 25.09.2018 um 4 Uhr, 52 Minuten.
  • Dazwischen liegen ziemlich genau 82,24 Tage
  • Diese Zahl teilen wir durch 29,53 (das ist die synodische Umlaufzeit des Mondes, also die Zeit von Neumond zu Neumond bzw. von Vollmond zu Vollmond.)
  • Als Ergebnis erhalten wir 2,785.
  • Die Zwei vor dem Komma bedeutet, dass inzwischen zwei Mondperioden durchlaufen wurden,
  • die 0,785 nach dem Komma zeigt, dass wir einen zunehmenden Mond haben und es nicht mehr lang bis Vollmond ist – siehe Tabelle oben.

In Python sieht das dann so aus – basierend auf der zur Ausführung geltenden Zeit:

 Aus Gründen der Nachvollziehbarkeit und zum Debuggen habe ich die einzelnen Rechenschritte nicht zusammengefasst. Epoch ist quasi der Nullpunkt der Unix/Linux Zeitrechnung und repräsentiert den 1.1.1970. Die Betriebssystem internen Zeitstempel basieren auf “Sekunden seit Epoch”. Es gilt hier immer die eingestellte Systemzeit, also nicht UTC.

Einen vergangenen Vollmond könnt ihr für beliebige Orte der Welt auf der Seite mondverlauf.de nachschauen.

Das Abrunden auf 2 Nachkommastellen am Ende ist wichtig, da sonst nur für eine sehr kurze Zeit überhaupt die konkreten Phasen Voll, Halb und Neumond ausgegeben werden.

Beleuchtete Mondoberfläche

Will man nun ausrechnen, zu wieviel Prozent der Mond gerade beleuchtet wird, dann muss man etwas tiefer in die trigonometrische Trickkiste hinein greifen.

Etwas Mathematik

Da wir nur wissen wollen, wieviel Prozent der Mondscheibe sichtbar sind,  müssen wir nicht wissen, wie groß der Mond an sich ist, es reicht die Annahme, dass die Mondscheibe von der Erde aus gesehen in etwa kreisförmig erscheint und dass die Trennlinie zwischen Hell und Dunkel (Terminator genannt) in etwa einer halben Ellipse gleicht.  Für die Berechnung reicht uns daher als “Mondmodell” der sogenannte Einheitskreis mit Radius R = 1 und eine Ellipsenformel.

Ein Vollmond (entspricht 100% beleuchteter Mondoberfläche) hat in diesem Modell eine Fläche von 1² * π, also 3,1416.  Ihr erinnert euch sicher noch: Die Fläche eines Kreises ist R²*π

Die Beleuchtung für alle Mondphasen dazwischen (also 0% für Neumond und 50% für Halbmond) berechnen wir, indem wir vom Halbmond ausgehen und die der Mondphase entsprechende halbe Ellipsenfläche abziehen oder addieren.

Die sichtbare Scheibe zwischen Halb und Vollmond errechnet sich aus der Fläche des Halbkreises plus der halben Ellipsenfläche.

Für eine Scheibe zwischen Neumond und Halbmond errechnen wir die Beleuchtung aus der Fläche des Halbkreises minus der halben Ellipsenfläche.

Die Fläche des Halbkreises beträgt π/2 also 1,5716.

Die Formel für die Fläche der Halbellipse lautet (s * R * π)/2

Die kurze Halbachse s errechnet sich unter Zuhilfenahme des  weiter oben ausgerechneten Wertes phase.
Für Werte von phase zwischen 0 bis 0.5 lautet die Formel

s = cos(phase * 2 * π)

für Werte von phase zwischen 0.5 und 0.9999

s = – cos(phase * 2 * π)

(Minuszeichen vor dem cosinus beachten). Haben wir die Fläche der halben Ellipse berechnet, setzen wir das Ganze dann ins Verhältnis zum Vollkreis (Vollmond).

Ein Beispiel:

  • Phase ist hier 0,375 (entspricht einem abnehmenden Viertelmond)
  • s = cos(0,375 * 2 * π) = -0,7071
  • Fläche der Ellipse = -0,7071 * 1 * π  = -2,2214
  • davon die Hälfte = -1,1107
  • Addiert zur Fläche des Halbkreises = 1,5708 + (-1,1107) = 0,4601
  • in Prozent des Vollkreises = 0,4601/3,1416 * 100 = 14,6% der Mondoberfläche sind beleuchtet.

Python Code

Auch hier habe ich die einzelnen Rechenschritte zum besseren Verständnis – und um das Debuggen zu erleichtern – nicht zusammengefasst.

oder beides zusammen als Subroutine

Wird das Programm direkt aufgerufen, gibt es die aktuelle Mondphase numerisch und in Textform sowie die beleuchtete Mondoberfläche aus.

Das Programm (ich habe es mond.py genannt) kann in andere Programme mit import mond (ohne .py am Ende) eingebunden werden. Aufgerufen wird es folgendermaßen:

Quellen:

Als sehr hilfreich zum Verständnis haben folgende Webseiten erwiesen:

http://www.Mondverlauf.de
http://avila.star-shine.ch/astro/berechnungen.html

 

 

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

Wordpress Anti-Spam durch WP-SpamShield